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Overview

Timeline Barriers Addressed

e Start date: October, 2012 e Energy density

e End date: September, 2016 e Cycle life

e Percent complete: 70% e Safety

Budget Partners

e Total project funding e Collaborations: LBNL, UCB,
- FY2013 $500K Cambridge, ORNL, PNNL, NCEM,
- FY2014 S500K ALS, SSRL

* Project lead: Venkat Srinivasan



Objectives — Relevance

Obtain fundamental understandings on phase transition
mechanisms, kinetic barriers, and instabilities in high-energy
cathode materials.

Control cathode-electrolyte interfacial chemistry at high operating
voltages and minimize solid-state transport limitations through
particle engineering.

Develop next-generation electrode materials based on rational
design as opposed to the conventional empirical approaches.



Milestones

December 2014

Characterize Ni/Mn spinel solid solutions and
determine the impact of phase transformation and
phase boundary on rate capability (Completed)

March 2015

Complete the investigation on crystal-plane specific
reactivity between Li-rich layered oxides and the
electrolyte. Determine morphology effect in side
reactions (Completed)

June 2015

Develop new techniques to characterize reactions
and processes at the cathode-electrolyte interface.
Evaluate the effect of surface compositions and
modifications on side reactions and interface
stability (On schedule)

September 2015

Go/No-Go: Continue the approach of using
synthesis conditions to vary surface composition if
significant structural and performance differences
are observed (On schedule)




Approach

1) Remove the complexity in high-energy 2) Perform advanced diagnostics for insights
cathode materials — synthesize crystal — ex situ and in situ studies to characterize
model systems with defined attributes crystal-plan specific transport properties
for the investigation of solid state and interfacial chemistry. Establish direct
chemistry, kinetic barriers and correlations between physical properties,
instabilities. performance, and stability.

Phase distribution (TXM/SSRL) and atomic imaging
(HRTEM/NCEM)

3D compositional mapping (APT/PNNL)
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3) Design and synthesize optimized electrode
materials based on the structural and
mechanistic understandings.




Technical accomplishments: overview

Determined structural make up of the entire Li and Mn rich NMC (LMR-NMC)
crystal

Revealed the contribution of key surface properties to the material challenges
facing LMR-NMC, including:

» First cycle irreversibility and rate capability (kinetics)

 TM reduction and dissolution during cycling

» Capacity retention and side reactions with the electrolyte

* DCresistance increase

* Voltage fade

Investigated the kinetic implication of solid-solution vs. biphasic reaction pathways
in intercalation cathode materials

* Synthesized and characterized room-temperature Li,Mn, :Ni, :O, solid
solution phases for the first time

* Evaluated the role of phase boundaries and phase transformation in the
kinetics of materials with first-order transition

Diagnostic techniques developed for the use of single-particle based investigation
relevant to cathode performance and stability.

This presentation mainly focuses on 1) and 2).



Synthesis of LMR-NMC crystal samples

* Molten-salt method: high-temperature solution based synthesis Sss
promotes crystal nucleation and growth in the flux.

Morphology of LMR-NMC (Li, ,Niy ;3Mng ,C0, 130,) crystals varied by
adjusting reaction precursors, flux, heating temperature and time.




Our crystals are monoclinic single phase

HAADF STEM imaging (Alpesh Shukla, LBNL)

Needle

« Domains of three monoclinic variants in random distribution in the entire crystal.
« Not a composite with R-3m and C2/m nano-domains.
e Crystal structure independent of morphology.



Pristine oxide has reduced TM on surface

Atomic resolution EELS mapping (Alpesh Shukla, LBNL)
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* Bulk Mn, Co and Ni at 4+, 3+ and 2+, respectively.
* Mn and Co reduced but Ni remains at 2+ on the surface layer (about 2 nm thick).



Reduced surface TM in spinel structure

Multiple zone axes HAADF STEM imaging (Alpesh Shukla, LBNL)
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 STEM imaging in multiple zone axes is essential for determine the structures.

e Bulk has monoclinic structure while surface has spinel structure with reduced TM.

* Spinel formation on pristine surface is directional/morphology dependent —
minimal spinel formation in the TM layer stacking direction.



Pristine surface TM reduction morphology dependent

Soft XAS L edge spectra collected
on composite electrodes with
carbon and binder
(SSRL beamline 10-1)
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Depth-resolved XAS confirms reduced Mn and Co on the top surface (a few nm) while Ni remains at
2+ in entire particle.

Effects of surface facet and surface area — TM reduction least on Plate and L-Poly samples with
predominantly TM layer surface while most on S-Poly and Box samples.



Surface TM reduction increases with cycling
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* Mn XAS spectra show lower valent Mn content increases with cycling (2.5-4.6 V).

* Cycling-induced surface Mn reduction occurs on all samples but most extensive on the Box sample.



Cycling-induced TM reduction surface dependent
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* Cycling-induced TM reduction progresses from the surface to the bulk.
* Effects of morphology and initial spinel content — most TM reduction during cycling

occurred on Box while least on L-Poly sample.



Chemical distribution of TM at particle level — pristine
STXM, BL 11.0.2 (with T. Tyliszczak, ALS)
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* Transmission mode imaging on LMR-
NMC crystals at a spatial resolution of
about 20 nm (single pixel).

scanned
sample zone plate * Mn and Ni are 4+ and 2+, consistent
detector e e with the measurement on the bulk

ey sample.
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....................... * No variation in oxidation state from the
rder sorting """ center to the edge of the plate crystal,
aperture consistent with minimum TM reduction

on the pristine plates.



Chemical distribution of TM at particle level — cycled
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« Some Mn and Co reduction on particle surface but significantly less than the large amount
detected by XAS on the electrodes.

e Are the reduced Mn and Co observed on cycled electrodes structural to the crystal or
surface deposits resulting from the TM dissolution/migration/precipitation process?



Cycling-induced TM dissolution/migration/precipitation
Separators recovered from the cycled half cells:

e The side facing lithium covered with black
deposits which increase with cycling.

* Soft XAS (L edge, TEY mode) shows presence of
Mn, Co and Ni on the separator, all at 2+
oxidation state.
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» Surface properties of pristine oxide, both morphology and initial spinel content, affect
TM dissolution.



Surface properties impact first-cycle activation kinetics

Li content
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Both size and surface facet have major impact on structural evolution and first-cycle
activation kinetics during chemical delithiation with NO,BF,/CH,CN.

Size critical for kinetics — best performance on S-Poly sample with the smallest particles.



Surface properties impact first-cycle activation kinetics

5.0
—e— Plate
—a— Needle
4.5- | —=— |-Polyhedron
Plate 1E-14 & —v— S-Polyhedron
S 404 Needle F . ./:::
~ L-Poly - . B S
Q — - v/!/
=2 ———S-Poly 0 I /
© (7)) A
57 Box e 1E15L “
g Octahedron E
3.0- Q
2.5- 1E-16 £
2.0 T T T T T T T T . T . | . | i [ L ! L 1 L 1 L 1 L 1
0 50 100 150 200 250 300 350 3.8 4.0 4.2 44 4.6 4.8
Capacity (mAh/g) Voltage (V)

» Effect of particle size — best activation kinetics observed on S-Poly sample.

» Effect of surface facet — among large crystals, Plate easiest while Box most difficult
to activate upon electrochemical charging.

* Diffusion coefficient nearly two orders magnitude smaller at the activation plateau.



Surface impact rate capability and capacity retention

Capacity (mAh/g)
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Effect of particle size — best rate capability

and most capacity from the S-Poly sample.

Effect of surface facet — Plate best while
Box worst among large-sized samples.

Worst capacity retention on Box sample
with the most TM reduction during
cycling.
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Surface impact on DC resistance rise
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e DCresistance rise at low SOC (<50%) reduces usable energy of the material.

* DCresistance rise occurs on all our samples.

» Effect of particle size — much improved on S-Poly sample with smaller particles.



Voltage (V)

Surface impact on voltage fade
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Voltage fade occurs on all our samples.

Voltage fade is associated with TM reduction during the cycling — Box sample

has the most voltage fade while L-Poly ha

s the least.
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Phase boundaries and kinetic behavior in materials

with first-order phase transition

Conventional wisdom says the
access to solid-solution reaction
pathways increases rate
capability and cyclability.

Is there correlation between
kinetics and the extent of solid
solution transformation in two-
phase systems? Kinetics as a
function of solid solution
transformation?

But solid solutions are metastable
and difficult to isolate for their
physical and kinetic properties
evaluation.
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Synthesis/isolation and characterization of solid solutions

TXM, BL 6.0.3 (SSRL) with Jordi Cabana (UIC)
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* The cubic phases merge into a single solid-solution phase
at elevated temperatures which remains phase pure upon
cooling to RT.

 Thermal behavior is Li content dependent.

e Particle level distribution of phases monitored.

e Physical properties of solid solution similar to the pristine.



Collaborations

Drs. Marca Doeff and Phil Ross (LBNL), Drs. Ethan Crumlin and Tolek Tyliszczak (ALS),
Drs. Apurva Mehta and Yijin Liu (SSRL) — synchrotron in situ and ex situ XRD, XAS,
XPS, STXM and TXM studies

Dr. Robert Kostecki (LBNL) — Raman and FTIR characterization of electrode materials
Prof. Clare Grey (Cambridge) — NMR studies

Prof. Bryan McCloskey (UC Berkeley) — gassing under high-voltage operation of
cathodes

Prof. Jordi Cabana (UIC) — synchrotron TXM studies

Prof. Shirley Meng (UCSD) — synchrotron coherent X-ray diffractive imaging (APS)
Dr. Ashfia Hug (ORNL) — neutron diffraction

Dr. Chongmin Wang (PNNL) — TEM

Dr. Arun Devaraj (PNNL) — atom probe tomography

Dr. Jagit Nanda (ORNL) — new cathode material synthesis and characterization



Future Work

Further investigate the impact of synthesis, particle morphology,
native and artificial surface modification on the rate performance,
cycling and thermal stabilities of Li-TM-oxides.

Determine Li concentration and cycling dependent transition-
metal movement in (through structural rearrangement process)
and out of (through TM dissolution process) the oxide particles
and examine the mechanisms.

Investigate interfacial chemistry between high voltage cathode and
electrolyte. Determining the dynamic structural and chemical
changes at the interface.

Identify key surface properties and features hindering stable
cycling of Li-TM-oxides at high voltages.

Explore other aspects of particle engineering to improve cathode
performance and stability.



Summary

Thin layer of defective spinel with reduced TM exists on the surface of pristine
LMR-NMC. The amount of spinel formation is largely controlled by particle
morphology (surface facet and surface area).

Both morphology and surface spinel on pristine impact kinetics and stability,
particularly:

o Structural stability — pristine surface TM reduction and spinel formation,
cycling-induced TM reduction, DC resistance changes and voltage fade

o Kinetics — chemical delithiation, first cycle activation and rate capability
o Reactivity — capacity retention, coulombic efficiency and TM dissolution
TM reduction increases with cycling which progresses from the surface to bulk.

Not all reduced TM is structural. TM dissolution/precipitation largely
contributes to the reduced TM on cycled electrodes detected by surface
sensitive XAS.

RT L,MNO solid solution phases were synthesized and characterized. The roles
of phase boundaries and phase transformation in the kinetics of materials with
first-order transition investigated.



Technical Back-Up Slides



Intensity (Arb. Units)

Journal of Electron Spectroscopy and
Related Phenomena 190, 64-74 (2013)

Standard soft XAS spectra for transition metals
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Surface Co reduction increases with cycling
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* Co L-edge XAS spectra show the formation of Co?* increases with cycling.



Property-controlled crystal synthesis

e We utilize high-temperature and low-temperature solution based
synthesis techniques, including solvothermal and molten-salt synthesis, to
prepare high-quality crystal samples.

Effect of flux on LiMn, :Ni, :O, morphology
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Thermal-driven Li,MNO solid solution formation
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e Formation of Li,Mn, ¢Ni, :O, (Li, MNO)
solid solutions initiated around 150 °C and
completed around 250-265°C.

e Cooling of solid solution phases follow
thermal expansion behavior with no phase
separation.

e Thermal behavior is Li content dependent.



Li, MNO phase diagram on heating
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